31 research outputs found

    Multi-criteria Evolution of Neural Network Topologies: Balancing Experience and Performance in Autonomous Systems

    Full text link
    Majority of Artificial Neural Network (ANN) implementations in autonomous systems use a fixed/user-prescribed network topology, leading to sub-optimal performance and low portability. The existing neuro-evolution of augmenting topology or NEAT paradigm offers a powerful alternative by allowing the network topology and the connection weights to be simultaneously optimized through an evolutionary process. However, most NEAT implementations allow the consideration of only a single objective. There also persists the question of how to tractably introduce topological diversification that mitigates overfitting to training scenarios. To address these gaps, this paper develops a multi-objective neuro-evolution algorithm. While adopting the basic elements of NEAT, important modifications are made to the selection, speciation, and mutation processes. With the backdrop of small-robot path-planning applications, an experience-gain criterion is derived to encapsulate the amount of diverse local environment encountered by the system. This criterion facilitates the evolution of genes that support exploration, thereby seeking to generalize from a smaller set of mission scenarios than possible with performance maximization alone. The effectiveness of the single-objective (optimizing performance) and the multi-objective (optimizing performance and experience-gain) neuro-evolution approaches are evaluated on two different small-robot cases, with ANNs obtained by the multi-objective optimization observed to provide superior performance in unseen scenarios

    Modified predator-prey (MPP) algorithm for single-and multi-objective optimization problems

    Get PDF
    The aim of this work is to develop an algorithm that can solve multidisciplinary design optimization problems. In predator-prey algorithm, a relatively small number of predators and a much larger number of prey are randomly placed on a two dimensional lattice with connected ends. The predators are partially or completely biased towards one or more objectives, based on which each predator kills the weakest prey in its neighborhood. A stronger prey created through evolution replaces this prey. In case of constrained problems, the sum o f constraint violations serves as an additional objective. Modifications of the basic predator-prey algorithm have been implemented in this study regarding the selection procedure, apparent movement of the predators, mutation strategy, dynamics of the Pareto convergence, etc. Further modifications have been made making the algorithm capable of handling equality and inequality constraints. The final modified algorithm is tested on standard constrained/unconstrained, single and multi-objective optimization problems

    Conceptual Design of Cellular Auxetic Systems with Passive Adaptation to Loading

    Full text link
    Auxetics refer to a class of engineered structures which exhibit an overall negative Poisson's ratio. These structures open up various potential opportunities in impact resistance, high energy absorption, and flexible robotics, among others. Interestingly, auxetic structures could also be tailored to provide passive adaptation to changes in environmental stimuli -- an adaptation of this concept is explored in this paper in the context of designing a novel load-adaptive gripper system. Defining the design in terms of repeating parametric unit cells from which the finite structure can be synthesized presents an attractive computationally-efficient approach to designing auxetic structures. This approach also decouples the optimization cost and the size of the overall structure, and avoids the pitfalls of system-scale design e.g., via topology optimization. In this paper, a surrogate-based design optimization framework is presented to implement the concept of passively load-adaptive structures (of given outer shape) synthesized from auxetic unit cells. Open-source meshing, FEA and Bayesian Optimization tools are integrated to develop this computational framework, enhancing it adopt-ability and extensibility. Demonstration of the concept and the underlying framework is performed by designing a simplified robotic gripper, with the objective to maximize the ratio of towards-load (gripping) horizontal displacement to the load-affected vertical displacement. Optimal auxetic cell-based design generated thereof is found to be four times better in terms of exhibited contact reaction force when compared to a design obtained with topology optimization that is subjected to the same specified maximum loading.Comment: Presented at (and accepted for publication in the proceedings of) International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE) 202
    corecore